武穴论坛

 找回密码
 中文注册
查看: 367|回复: 5

[街谈巷议] 化肥对生态农业的影响

[复制链接]
发表于 2017-2-19 22:00:21 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?中文注册

x
化肥对生态农业的影响

1化肥使用和环境污染状况
我国的化肥施用量增长速度快,呈现逐年递增的趋势。1985年全国化肥施用总量为1775.8万t,2002年达4339.5万t,比1985年增长1.4倍,年平均增长率为8%[2,3]。与此同时,单位面积化肥施用量也呈逐年递增趋势,2002年达到了333.7kg/hm2[2,3](图2),高于世界平均水平。施用化肥可提高土壤肥力,改善土壤性状,创造最佳的植物营养环境,从而提高农产品的质量。但是,化肥用量并非越大越好。一般来说,各种作物对化肥的平均利用率,氮为40%~50%,磷为10%~20%,钾为30%~40%[4]。通常,化肥施用量越高,流失到环境中的数量也就越大,对生态环境的污染程度也就越高。以氮肥为例,由于施用量较高,而利用率较低,损失严重。据对我国主要粮食作物氮肥去向的研究的数据,我国氮肥的利用率在9%~72%之间,平均为30%~41%[5]化肥每年的流失量占施用量的40%左右[6]。化肥的过量施用与地区经济的发展水平有密切关系。一般来说主要发生在经济相对发达地区,尤其是种植蔬菜等经济作物的田块上。此外,也与农业生产的发展,化肥品种的单一性、施肥的盲目性、施用技术的不合理等因素有关。
2化肥施用与土壤生态环境
2.1引起土壤酸化和板结,导致土壤肥力下降长期施用化肥对土壤的酸度有较大的影响。在江西红壤中,盆栽试验结果表明,在酸性红壤中施用硫酸钾、硫酸铵等,都会使红壤的酸度有不同程度的增大[7]。同时,硫酸钾在中性和石灰性土壤中生成硫酸钙,而在酸性土壤上生成硫酸,因此在中性和石灰性土壤上长期大量施用硫酸钾,土壤中钙会逐渐减少,而使土壤板结。土壤酸化和土壤板结使耕地土壤退化,生产力降低,并可活化有害重金属元素如铝、锰、镉、汞、铅、铬等,增加它们在土壤中的活性,或导致有毒物质的释放,使之毒性增强,进一步对土壤生物造成危害。土壤酸化还能溶解土壤中的一些营养物质如钾、钙、镁等,在降雨和灌溉的作用下,向下渗漏补给地下水,使得营养成分流失,造成土壤贫瘠化,影响作物生长。大量的施用化肥,用地不养地,造成土壤肥力的普遍下降。据调查,由于长年施用化肥,华北平原土壤有机质已降到1%左右,全氮含量不到0.1%,在东北三江平原,多年重用轻养,使土壤有机质的含量从10%~11.5%下降到3%~5%[8]。从第二次全国土地普查的1403个县的汇总来看,土壤有机质低于0.6%的农田占10.6%;农田总面积的52.6%缺磷,23%缺钾,14%磷钾俱缺。由于大量使用以氮肥为主的化肥,导致很多土壤中磷或钾成为限制肥力的主要因子;缺硼、钼、锰、锌和铜的农田分别为25.6%、34.8%、15.8%、38.0%和5.2%[9]。
2.2化肥中的有害物质对土壤的污染制造化肥的矿物原料及化工原料中,含有多种重金属放射性物质和其它有害成分,它们随施肥进入农田土壤造成重金属污染。磷肥的施用,不可避免地带给土壤许多有害物质:镉、锶、氟、镭、钍等。施用磷肥过多,会使施肥土壤含镉量比一般土壤高数十倍、甚至上百倍,长期积累将造成土壤镉污染[10,11~13]。由于镉在土壤中移动性很小,不易淋失,也不为微生物所分解,被作物吸收后很易通过饮食进入并积累于人体,是某些地区骨通病、骨质疏松等重要病因之一。但是据鲁如坤等测定[14],我国磷矿镉含量范围在0.1~571mg/kg,但大部分在0.2~2.5mg/kg,比世界主要国家磷矿都低。目前随磷肥进入土壤中的镉含量最多为0.59g/hm2,远远低于我国最低绝对环境容量(0.73kg/hm2)[15]。可以认为,国产磷肥长期施用时所带入土壤的镉量不至于造成环境问题。但是,我国还进口一些国外磷矿,这些磷矿一般含镉量远远高于我国磷矿。对于这些磷矿生产的磷肥,应对其含镉量加以监测,以确保我国土壤不受污染。有些化肥中还含有机污染物,以致生产出含酚量较高、具有异味的农产品。另外,大量施用石灰氮(氰化钙)可产生双氰胺、氰酸等有害物质,抑制土壤硝化作用,引起土壤污染,严重威胁着粮食生产。三氯乙醚的污染是一个比较典型的事例[16],它是由于施用含三氯乙醚的废硫酸生产的普通过磷酸钙肥料所引起的。其中666.7hm2以上的污染事故在山东、河南、河北、辽宁、苏北、皖北等地曾多次发生,受害品种包括小麦、花生、玉米等10多种农作物,轻则减产,重则绝收。有的田块毁苗后重新播种多次仍然受害,损失很大。
2.3造成土壤硝酸盐(NO3-)污染和土壤次生盐渍化频繁施用氮肥能直接影响土壤中NO3--N的含量水平。在过量施用氮肥和大量灌溉的情况下,肥料氮主要以硝酸态形式从土壤中淋溶损失。有试验结果表明,土壤中的硝态氮含量随施肥量的增加而增加[17~19]。古巧珍等通过大田长期定位施肥试验研究了土壤剖面硝态氮分布与累积,表明长期单施化学氮肥或氮钾、氮磷、氮磷钾肥使土壤NO3--N大量积累,从而随土壤水分,通过土壤-植物系统而部分淋失[17]。与大田作物相比,蔬菜保护地施肥量大且施肥次数频繁。由于温室大棚内土壤水分蒸发快,土壤返盐现象比较严重[20]。因此大量施用化肥,容易使保护地NO3-离子大量剩余与迅速累积,加速了土壤盐积和次生盐渍化[21]。崔正忠等对黑龙江省四个中心城市蔬菜保护地土壤养分变化趋势进行了研究,分析结果表明,过量施用无机肥料,致使一些保护地土壤速效氮、磷、钾含量过高,部分土壤含盐量高达0.567%,出现盐渍化现象[22]。另外,由于农民缺乏必要的技术指导,对N、P、K及微量元素肥料使用缺乏科学知识,只注重施用见效快的氮肥,导致养分供应失衡,影响作物正常吸收利用,势必引起土壤盐分的过剩而累积。设施栽培条件下,次生盐渍化通常是造成连作障碍的重要因素之一,盐分的过分积累会造成作物生理性干旱,甚至生理毒性物质的形成[23]。
3化肥施用与水环境
3.1为水体富营养化提供氮、磷等营养源
农业生产中大量施用化肥,使氮、磷等营养元素大量进入水体,引起水体富营养化,造成化肥对地表水的非点源污染。据估计,沉入河、湖的氮素约有60%来自化肥[1]。美国环保部门一项研究报告也同样估计,每年流入河流中的氮和磷量有29.1%~67.5%的N,25.0%~45.9%的P来自农田径流,并随着施肥量的增加而增加,农田是水体富营养化的主要营养源,施肥对地表水和地下水中氮、磷含量的增加有重要影响[24]。吕耀等报道:太湖流域等农业集约化较高的地区出现了施肥过量以及肥料结构不合理的现象,造成大量氮通过地表径流进入太湖,从而加剧了太湖水体富营养化[25]。张兴昌等则发现径流流失的无机氮主要以硝态氮为主[26]。
3.2氮素淋溶污染地下水
农业上长期大量施用化肥是造成地下水硝酸盐污染的重要原因。长期使用氮肥的地区,地下水含氮量在逐年增高。氮肥进入土壤后,经硝化作用产生NO3-,除了被作物吸收利用外,其余的NO3-不能被负电的土壤胶体吸附,因而随降雨下渗而污染地下水[8]。朱建华等认为施用氮肥不仅增加了土壤表层硝酸盐含量,同时也容易造成大量的硝酸盐被淋洗到深层土壤,形成对地下水的潜在威胁[27]。据调查,京、津、唐地区69个观测点的地下水,半数以上硝态氮含量超标,高者达67.7mg/kg[28]。有资料表明,北京市郊菜田因施用氮肥过多,地下水硝态氮含量为61.6~124.0mg/kg[29]。农田施用氮肥对地下水的污染很普遍[30]。在大量施用氮肥地区,食用水中硝态氮含量经常超过最大允许量[31]。
4化肥过量施用对作物品质及食物链的影响
过量施用化肥,不但造成肥料养分的浪费,而且对植物体内有机化合物的代谢产生不利影响。在这种情况下,植物体内可能积累过量的硝酸盐、亚硝酸盐。过量的硝酸盐和亚硝酸盐在植物体内的积累一般不会使植物受害,但是这两种化合物对动物和人的机体都是有很大毒性的,特别是亚硝酸盐,其毒性要比硝酸盐高10倍[32]。植物性产品中高含量的硝酸盐会使其产品品质明显降低。硝酸盐以过多的有毒的数量被作物大量吸收,成为作物产品的污染源。对同一种作物,氮肥施用愈多,土壤中的NO3--N含量也愈高,则作物体内的NO3--N含量也将随之提高[33~36],进而经由食物或饲料,影响进入人体或畜禽体内的NO3--N含量。尽管NO3-本身毒性不大,但它在人体肠胃中经硝酸还原细菌的作用会转化成NO2-,从而可能引起人体血液缺氧中毒反应,导致患有高铁血红蛋白血症,甚至引起窒息和死亡[32]。蔬菜是一种容易富集和残留硝酸盐污染的作物。人体摄入的硝酸盐有81.2%是来自蔬菜[37],而施入土壤中的各种N肥又是蔬菜累积硝态氮的主要来源[38]。孙权等对宁夏灌於旱耕人为土氮肥(N)与大白菜产量及菜体和土体中硝酸盐累积的关系进行了田间试验研究[39],结果表明,在设计范围内,施用N明显增加土体各土层中的硝态N含量,内叶硝酸盐含量随施N肥量的增加而增加,外叶硝酸盐含量在高施N时,随生育期延长而增加。陈新平等调查表明,北京市郊菜地施氮量高达每季781.5kg/hm2,过量的氮肥施用造成蔬菜(特别是叶菜类蔬菜)硝酸盐含量过高,在每公顷施氮量225~675kg的范围内,小白菜地上部分硝酸盐含量达3993~4504mg/kg[40]。
养分投入不平衡已成为制约蔬菜产量和品质提高的重要因素,超高量的化肥施用存在着巨大的环境风险。氮营养过剩一方面会导致蔬菜叶面积过大,结实不良,易感病虫害,对不良气候环境的抗逆性变弱;另一方面,氮过量会造成土壤中亚硝酸、氨气等气体挥发而引起作物地上部分直接受害,造成气体障碍[41]。磷过量,菜地土壤较其他土壤有效磷含量要高出十倍至数十倍,高磷土壤蔬菜生育期明显延长,并由于作物对N、P的过量吸收,而引起其他营养元素的缺乏、营养失调等生理病害,严重影响蔬菜的产量和品质,如形成番茄脐腐病、空果、条腐果,青椒小果,黄瓜苦味,莴苣的叶烧病以及甜瓜、芹菜的心腐病等[42]。马朝红等依据蔬菜生长需肥特性和养分平衡原理[7],结合随机抽样调查数据分析,结果表明,武汉市市郊东西湖区蔬菜养分投入量远高于蔬菜生长需肥量,导致氮、磷在土壤中的大量积累,其中以磷最为突出,每季蔬菜磷的积累量达到220~380kg/hm2,氮积累量为80~210kg/hm2,必然会对产品品质和产量带来负面影响,增加农业环境风险。胡承孝等以潮土、黄棕壤为供试土壤,选取小白菜、番茄分别为叶菜类、果菜类代表,在土培条件下研究了氮肥水平对蔬菜品质的影响,分析表明,随着氮素水平的提高,蔬菜营养品质下降,蔬菜体内维生素C、可溶性糖含量下降,氨基酸总量及谷氨酸,脯氨酸等氨基酸含量,非蛋白氮与总氮比值升高,可滴定酸度呈直线增加,N含量逐渐增加,而P、K含量逐渐减少,硝酸盐污染加剧[43]。
回复

使用道具 举报

 楼主| 发表于 2017-2-19 22:00:36 | 显示全部楼层
5化肥施用与大气环境

化肥对大气环境的影响主要集中在氮肥上,氨挥发及NOx的释放等会使大气中氮含量增加而带来一系列的影响。硝化及反硝化释放N2O到大气中造成温室效应,氮肥的使用对其它温室气体CH4及CO2的释放也有影响。而且CH4、CO2等气体在大气中的含量增加,不仅能引起温室效应,而且还能够引起臭氧层的破坏。

5.1氨挥发

氨态氮肥是化学氮肥的主体,施入土壤的氨态氮肥很容易以NH3的形式挥发逸入大气。农业生态系统中NH3的释放量每年为107t,主要来自于NH4+-N肥和动物排泄物中NH3的挥发。据王文兴等[44]估计,我国1991年全国人为源氨的排放量为8.91×106t,其中氮肥施用的排氨量占氮肥使用量的18%。据朱兆良[45]估计,我国农田氮素的主要损失途径为氨挥发、反硝化和淋失及径流损失。综合有关资料看出,稻田中氮的损失主要是反硝化和氨挥发,分别占氮肥施用量的16%~41%和9%~40%[46]。旱地,特别是石灰性土壤上撒施尿素、碳酸氢铵的NH3挥发损失很大,一般为所施N量的10%~25%[47,48]。在石灰性水稻田,由于灌溉稻田表面水层的pH高达7~8,撒施或分次施用尿素(或碳酸氢铵)的NH3挥发量很大,有时高达所施N量的40%~50%[49]。硝酸盐淋失和氮素径流损失主要发生在降水量和强度较大的地区和季节,约占氮肥施用量的0.23%~30%[23]。由此可见,我国农田氨挥发的氮素损失量可能占肥料氮肥施用量的10%以上。氨是一种刺激性气体,对眼、喉、上呼吸道刺激性很强。高含量的氨还可熏伤作物,并引起人畜中毒事故。大气氨含量的增加,可增加经由降雨等形式进入陆地水体的氨量,是造成水体富营养化的一个因素。

5.2N2O和NOX的排放

随着化肥的大量施用,大气中氮氧化物含量不断增加。化肥施入土壤,有相当一部分以有机或无机氮形态的硝酸盐进入土壤,在土壤反硝化微生物作用下,会使难溶态、吸附态和水溶态的氮化合物还原成亚硝酸盐,同时转化生成氮和氮氧化物进入大气,使空气质量恶化。1992年IPPC工作报告指出,由于人类活动加强,大气中N2O的含量正急剧增加,由农业系统中无机和有机氮肥的施用及生物固氮作用产生的N2O量约占年排放量的60%[50]。根据Veldkamp和Keller[51]估计,大约有所施N肥的0.5%是以NOx的形式损失。
5.3CH4和CO2的排放

化肥深施能明显降低稻田CH4的释放。如尿素的深施对降低甲烷排放速度效果最好,而施在土壤表面则能增加甲烷排放。硫酸铵也是如此,虽然表施和深施都能降低CH4排放量,但施在稻田表面对降低甲烷排放程度却比施在土壤深层低得多,大致低5~10倍[52]。施肥量对稻田CH4的排放,尤其对化肥施用量的影响,研究结果相差很大,难以定论。如Cicernoe等发现施硫酸铵的稻田甲烷排放是不施肥田的5倍;Schiitz则发现施用硫酸铵总体上降低了甲烷的排放,而有些试验则认为,施肥量对甲烷特征影响不大,或没有明显规律[53]。在江苏句容稻田试验中,施氮量为100kg/hm2和200kg/hm2的处理甲烷排放量高于不施氮肥处理,但施氮量最高300kg/hm2的处理却低于对照处理[54],所以化肥用量对稻田甲烷排放的影响仍有待进一步研究。随着农业集约化程度的提高,化肥的大量使用将会促进农田CO2的排放,如尿素地CO2通量大于不施尿素地CO2排放通量值,在整个观察期,两种田CO2平均排放量分别是262mg/(m2•h)和177mg/(m2•h)[55]。

6防治对策

随着肥料施用量的不断增加,化肥对农业生态环境的消极影响日益明显,促使人们开始反思大量施用化肥可能带来的某些问题及副作用。在国际上,掀起了以低投入、重有机,将化肥使用保持较低的水平,保障食品安全和环境安全为中心的持续农业运动,提倡推广以尽量低的化肥投入,尽量小的对环境的破坏与化肥在农业生产中的高效增产作用相结合为主要目的的“施肥制度”。若单纯地靠拒绝使用化肥来控制其污染影响是不现实的。最重要的是增加科技教育的投入,提高农民的科学素质,提高全民的环境意识,才可以有效地做到合理施肥。这与国家的政策调控也有关,核心的问题是怎样在粮食产量与环境保护、作物产量与品质之间找到平衡点,对我们国家来说,温饱问题还是非常重要的。无粮不稳,一方面要保证产量,另一方面则要保护环境。农业和土壤科学的研究要与生产实践紧密结合,做到从实践中来,再回到实践中去。研究不同土壤在不同耕作制度下的合理施肥技术,并通过地方政府定期向农民发布。针对当地土壤生态条件的特点,制定相应对策,科学合理地使用化肥,充分有效地发挥其肥效,尽量减轻和避免对环境的不良影响。根据我国目前土壤肥力状况和肥料资源的特点,提出以下对策。

6.1确定化肥的最适施用量

施肥量特别是氮肥,不应当超过土壤和作物的需要量。不同的土壤和相同土壤的不同地块,在养分含量上往往存在着很大的差异。而且不同作物和同一作物的不同品种,各有其不同的生育特点,它们在其生长发育过程中所需要的养分种类、数量和比例也都不一样。因此,在拟定施肥建议时必须严格按照作物的营养特性、预期产量和土壤的农化分析结果,来确定化肥的最适施用量。即要了解土壤肥力,这样才能做到合理施肥,减少淋失对生态环境的不良影响。但是由于预测土壤的供氮量比较困难,一般用“以土定产,因产定氮”法。太湖地区的水稻和小麦的田间试验统计结果证明了这一方法的可行性[45],因此可据此并结合已有的经验确定大面积上氮肥的施用量。

6.2化肥与有机肥结合施用

实现作物养分综合管理,有机和无机相结合,是提高作物生产力和氮肥利用率的重要措施之一。有机肥是营养比较齐全的肥料而且含有丰富的有机物,对改善土壤的物理性状,提高土壤养分含量具有重要作用。据西北农业大学在米脂县的调查[49],小麦连作多年的坡耕地,土壤有机质和全氮含量下降。而经过苜蓿倒茬的坡耕地,土壤有机质和全氮含量分别增加0.18%和0.02%(绝对值)。有机肥是供给微生物能量的主要来源,而化肥却能供给微生物生长发育所需的无机养料。因此,二者配合使用就能增加微生物的活性,促进有机物的分解,增加土壤中的速效养分,以满足作物生长的需求。有机-无机肥料结合施用符合我国肥源的国情,也是培肥土壤、建立高产、稳产农田的重要途径。

6.3氮、磷、钾等肥料配合施用

目前,我国氮、磷、钾比例及土壤养分状况与作物对养分的吸收状况不相协调。关键是必须从宏观上调整肥料结构,在配合施肥的基础上,采取“适氮、增磷、补钾”的施肥技术,使植物的矿质营养处于最佳状态。在目标施氮量中扣除一定比例的氮肥(如10%~20%[32]),视需要进行补施,这样可避免氮素过多的危害和流失。在当前钾肥亏缺较大的情况下,应当充分利用农家肥中的钾,以缓解钾素供应不足的矛盾,将有限的钾肥资源用在严重缺钾的土壤和需钾量高的作物上。同时,应重视发展我国高含量复合肥料,并以增加高含量磷肥和氮磷复混肥为主攻方向,这样既起到调整氮磷比例,又能起到逐步改变我国化肥品种结构以单一、低含量为主的现状。

6.4改进施肥方法

针对当前施肥不当和过量施肥造成的土壤污染,专家们进行了大量研究,提出了许多具体方案。例如过量施用氮肥引起NO3-污染,可以通过施用缓效氮肥,使用硝化抑制剂、脲酶抑制剂来降低土壤中的NO3-的含量;对于施肥造成土壤的重金属污染,可采用施用石灰、增施有机肥料、调节土壤Eh等方法降低植物对重金属的吸收积累,还可以采用翻耕、客土和换土来去除或稀释土壤中重金属和其它有毒元素。为提高肥料利用率,提倡改地面浅施为开沟深施和叶面喷施,改分散追肥为重施底肥等,减少施肥次数,减少肥料流失的机会。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-2-19 22:03:17 | 显示全部楼层
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-2-19 23:00:56 | 显示全部楼层
改变微生物群落对典型农田土壤作物生产力的影响
来自知网

作者  范淼珍

摘要

土壤微生物是农业生态系统的重要组成部分,影响着农业生态系统的众多过程,如养分循环和土壤的形成等,对农业生态系统的生产力有着重要的影响。然而目前关于农田微生物群落变化对植物生产力影响的研究鲜见报道。本研究通过对土壤灭菌和再接种的方法,对来自不同地区不同理化性质的典型农业土壤及其微生物群落进行组合,探索土壤微生物群落的变化对我国典型农田的养分循环及植物生产力的影响。研究结果如下:   1.本研究采用公主岭的灭菌黑土作为研究材料,选取未灭菌公主岭黑土以及德州的潮土、石河子的灰漠土、祁阳的红壤作为菌种进行相互接种培育后... 展开 土壤微生物是农业生态系统的重要组成部分,影响着农业生态系统的众多过程,如养分循环和土壤的形成等,对农业生态系统的生产力有着重要的影响。然而目前关于农田微生物群落变化对植物生产力影响的研究鲜见报道。本研究通过对土壤灭菌和再接种的方法,对来自不同地区不同理化性质的典型农业土壤及其微生物群落进行组合,探索土壤微生物群落的变化对我国典型农田的养分循环及植物生产力的影响。研究结果如下:   1.本研究采用公主岭的灭菌黑土作为研究材料,选取未灭菌公主岭黑土以及德州的潮土、石河子的灰漠土、祁阳的红壤作为菌种进行相互接种培育后,进行玉米盆栽试验,研究发现接种黑土微生物处理各有效养分含量(除铵态氮外)达到最高的值,其次为接种潮土的处理,而在接种灰漠土和红壤微生物处理中最低。与土壤生物化学过程密切相关的土壤β-1,4-葡萄糖苷酶(β G)和酸性磷酸酶(AP)活性在接种红壤中最高,其中土壤βG活性显著高于接种黑土和灰漠土的处理,且接种潮土的处理亦显著高于接种黑土的处理;AP活性显著高于其它接种处理,且各处理间都存在显著差异;而各处理间土壤多酚氧化酶(PhOX)活性无显著差异。微生物群落结构分析表明,土壤微生物多样性指标(香农指数、辛普森指数)在接种黑土处理中达到最高值,分别为2.03、0.83,而在接种潮土的处理中最低;接种黑土和湖土的处理微生物群落结构较相似,其它各处理间的群落结构都具有较大的差异性。黑土条件下接种不同土壤对植物生产力有显著影响,其中植株生物量在接种灰漠土和红壤的处理中显著高于接种黑土和潮土的处理。本研究对盆栽试验的各项指标进行相关性分析,结果表明植物生物量与土壤有效养分(除有效磷)呈显著负相关,而与土壤各酶活性无显著相关性;与土壤中Cytophagia种群有较高的正相关,而与Thermoleophilia、Chloracidobacteria和Acidobacteria种群有较高的负相关。   2.采用石河子的灭菌灰漠土作为研究材料,选取上述未灭菌的四种土壤作为菌种进行接种试验。研究发现接种黑土的处理土壤理化性质(含水量、硝态氮、有效磷和可溶性有机氮)仍表现出相对较高的值,其中各处理铵态氮和可溶性有机碳含量无显著差异;而接种黑土和潮土的含水量显著高于其它处理;硝态氮与可溶性有机碳之间表现出相似的趋势,接种黑土的处理仅显著高于接种红壤的处理;土壤有效磷含量在接种黑土的处理中显著高于灰漠土和潮土中。接种红壤中土壤β-1,4-葡萄糖苷酶(βG)、L-亮氨酸氨肽酶(LAP)和酸性磷酸酶(AP)活性亦最高,其中土壤β G活性仅显著高于接种潮土的处理;LAP和AP活性显著高于其它三种接种处理,这3个处理间只有接种灰漠土的LAP活性显著高于接种黑土的处理;而土壤多酚氧化酶(PhOX)活性在接种潮土的处理中最高,且显著高于其它接种处理,其它处理间无显著差异。微生物群落结构分析表明,土壤微生物多样性指标(香农指数、辛普森指数)在接种灰漠土的处理中达到最高值,分别为2.07、0.84,具体趋势为灰漠土>红壤>黑土>潮土;且黑土和潮土处理中微生物群落结构亦较为类似。灰漠土条件下接种不同土壤对植物生产力有显著影响,其中植株生物量在接种灰漠土和红壤的处理中亦显著高于接种黑土和潮土的处理。本研究各指标相关性分析表明,植物的生物量与含水量、有效磷、β-1,4-葡糖苷酶以及多酚氧化酶等指标呈显著负相关;与土壤中微生物中的Sva0725、Sphingobacteriia、Acidobacteria、Saprospirae等种群有较高的正相关,而Gammaproteobacteria、Chloracidobacteriad等群落有较高的负相关。   3.以祁阳的灭菌红壤作为研究材料,上述未灭菌四种土壤作为菌种进行接种操作实验。研究表明各接种处理的土壤有效养分仅铵态氮和有效磷之间存在显著差异,其中接种黑土的土壤铵态氮含量显著高于接种灰漠土和红壤的处理,而接种潮土和灰漠土的有效磷含量显著高于其它两种接种处理。各处理间仅L-亮氨酸氨肽酶(LAP)和酸性磷酸酶(AP)活性存在显著差异,其中接种黑土的LAP活性显著低于其它接种处理,而接种黑土的AP活性仅显著高于接种灰漠土的处理。各接种处理细菌多样性指数存在差异性,香农指数在接种灰漠土和红壤的处理中相对较高,而辛普森指数在接种黑土和灰漠土的处理中较高,且得出仅接种红壤和潮土的群落结构较相似。接种处理对植物的生物量存在显著影响,接种灰漠土处理植物生物量显著升高,而接种红壤虽无显著差异,仍有增加的趋势。本研究各指标相关性分析表明,植物的生物量仅与铵态氮、硝态氮含量存在一定相关性;而与土壤中Acidobacteria、Rubrobacteria等种群有较高的正相关,与土壤Alphaproteobacteria、Bacilli等种群有较高的负相关。   综上所述,土壤微生物结构组成不但能敏感的反应出土壤肥力水平,对植物的生产力也存在显著的影响。本研究结果显示3个地区不同类型灭菌土壤(黑土、灰漠土和红壤)在接种灰漠土和红壤的处理中,植物生产力较高;且各处理中仅灰漠土类型的土壤在接种灰漠土自身微生物群落结构时,植物生产力能达到最高值。本研究清晰表明,在不治病的情况下,土壤微生物群落对作物的生长具有显著影响,其影响程度在本实验条件下甚至可与土壤样品含量的影响媲美。因此,深入阐明农田土壤微生物影响作物生长的机制将具有非常重要的意义。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-2-19 23:05:17 | 显示全部楼层
醋糟菌糠对3种作物土壤微生物及酶活性的影响
来自万方

作者

董卿,程红艳,张建国,王效举,孟丽君,...

摘要

为研究醋糟菌糠作为一种生物肥料对土壤肥力的影响,为解决食用菌菌糠对环境污染及其有效利用提供科学依据,本文通过田间试验,对玉米、高粱、糯玉米3种作物基施醋糟菌糠后不同生育期的土壤脲酶、蔗糖酶和过氧化氢酶活性,细菌、放线菌和真菌数量,及微生物量碳、氮含量进行测试。研究结果表明:1)醋糟菌糠显著提高了作物根际土壤细菌、放线菌和真菌的数量。在作物整个生育期,加入醋糟菌糠的土壤细菌数量比对照提高32%~54%;放线菌数量在成熟期提高明显,玉米田土壤放线菌数量增幅最大,为101%;真菌数量变化总体趋势呈现先升高后下降的趋势。2)醋糟菌糠的施入增加了作物根际土壤脲酶、过氧化氢酶、蔗糖酶的活性。种植高粱、玉米和糯玉米土壤的脲酶活性增长率分别为239%、189%和185%;3种作物的土壤过氧化氢酶活性在抽穗期最高,最大增长率为40%;3种作物的土壤蔗糖酶活性在不同生育期变化趋势不同,玉米各生育期土壤蔗糖酶活性变化较为稳定,其增长率分别为38%、28%、48%。3)醋糟菌糠的施入增加了作物根际土壤微生物碳氮的含量,不同生育期3种作物的土壤微生物碳含量增幅为58.10~407.67 mg·kg-1,微生物氮含量增幅为11.98~27.55 mg·kg-1。由此可见,醋糟菌糠的施用可以增强土壤生产力的可持续性,从而达到保护和改善土壤环境的效果。同时该研究也为醋糟菌糠的有效利用提供了一定的科学依据。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2017-2-19 23:15:07 | 显示全部楼层
山药达人 要好好研究一下武穴山药的土壤和微生态就好,千万不要走了膨大素,又来了化肥王 。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 中文注册

本版积分规则

手机版|武穴信息网 ( 鄂ICP备2021017331号-1 )

鄂公网安备 42118202000100号

GMT+8, 2024-12-5 02:06 , Processed in 0.053684 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表